5 Ways Data Science Teams Can Raise Their Profiles - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT
IoT
Data Management // Big Data Analytics
Commentary
10/10/2014
12:06 PM
David Dietrich
David Dietrich
Commentary
Connect Directly
Twitter
RSS
50%
50%

5 Ways Data Science Teams Can Raise Their Profiles

What to do when your team of data scientists is isolated from the rest of the company.

Many times companies want to do more with data science and big data, but struggle with how to start. Or once they start, the data science team is a splinter group, and the rest of the organization does not know how to interact with them.

[Big data is about more than just business. Read Data Science That Makes a Difference.]

It's important to get a data science team in place, but that's where the real work begins. There are steps companies can take to make sure that collaboration is alive and well between data science teams and the rest of the company. The following five tips, based on my experience working with a number of data science teams, will help nurture that collaboration.

1. Consider a collaboration platform for analytics. Although collaboration platforms get less attention than modeling tools, there's been progress with tools that allow teams to perform and share advanced analytics. This is particularly helpful for geographically dispersed teams, providing a common workspace where team members can write notes to each other about their analyses, and work together on the project.

A couple of tools to consider in this space would be Alpine Chorus, which lets users interact with the data and execute advanced data mining techniques in PostGreSQL. Another option would be to look into OpenChorus, which is free and available on GitHub for teams to download. 

2. Take a team approach. Data scientists can spend huge amounts of time wrangling data, so sometimes it is better to bring a data engineer on to the team to help with this exact problem. This is someone who may excel at reshaping, manipulating, and loading data sets of various shapes and sizes into data stores for others to analyze. Many times companies think they need an army of data scientists, when what they need is a versatile and balanced team.

(Source: EMC)
(Source: EMC)

3. Consider hackathons. Another way to showcase the skills of the data science team is to hold or compete in Hackathons. This is a way to find important data science challenges and compete on a problem that someone cares about. Hackathons have exploded, and their breadth is staggering. Examples include HackNY, MassTech Transportation Hackathons, and many in the Bay Area. Hackathons allow data science teams to showcase their skills, and also make the group more visible to the company and the general public. Marketing departments are usually happy to promote this kind of activity and showcase the top talent at the organization.

4. Be competitive. Consider having your group form a team and compete on Kaggle and InnoCentive. These challenges range from automating essay scoring for the Electronic Testing Service to classifying the sentiment of sentences from the Rotten Tomatoes data set. This is another great way to help people, showcase skills, and increase the visibility of the team.

5. Work for the public good. There are plenty of good causes that need data scientists to help them. Examples include groups such as Data Kind, which take on challenges to help people in need and seek data scientists to assist them. Other instances may be groups such as EarthWatch and NGOs that are trying to champion a cause but need high-powered analytical help to drive home their points and show others the impact of the work being done.

Of course, the data science team has a day job, too, so they cannot spend all of their time on additional activities. Still, integrating a few of these activities periodically will raise the group's visibility and nudge them to work together as a team on important problems.

Before long, this will attract others within the company who have seen tangible examples of the data science team's work and now grasp the benefit of collaborating with them on their own business problems.

Apply now for the 2015 InformationWeek Elite 100, which recognizes the most innovative users of technology to advance a company's business goals. Winners will be recognized at the InformationWeek Conference, April 27-28, 2015, at the Mandalay Bay in Las Vegas. Application period ends Jan. 9, 2015.

David Dietrich is an advisory technical consultant in EMC's Global Education Services organization. His focus areas include big data analytics and data science. Recently, he co-developed EMC's first course in the new data science curriculum. He has filed multiple patents in ... View Full Bio
We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
pfretty
100%
0%
pfretty,
User Rank: Ninja
10/27/2014 | 2:45:50 PM
Great advice
The best way to garner more attention and pull within the enterprise is through results.  However, where a lot of people make a mistake here is starting by shooting for the moon. While its great to have goals, its even more important that organizations start with smaller projects that are sure to present data-based answers to known issues. If an organization starts smaller, it will see more successes, gain confidence and more importantly the buy-in and investments needed to continue propelling the organization forward. Actually, as a recent IDG SAS survey showed, most organizations struggle to accomplish many of the key tasks, so it may be smart for most to move to the basics. 

Peter Fretty
Charlie Babcock
50%
50%
Charlie Babcock,
User Rank: Author
10/10/2014 | 7:26:01 PM
Time for the 2 pizza rule?
It may be time for Amazon's 2 pizza rule: no teams larger than those that can be fed by 2 pizzas.
Laurianne
50%
50%
Laurianne,
User Rank: Author
10/10/2014 | 3:53:35 PM
Data science team building
"Many times companies think they need an army of data scientists, when what they need is a versatile and balanced team." Great advice. We have profiled CIOs who have logged big wins with small teams.
News
Think Like a Chief Innovation Officer and Get Work Done
Joao-Pierre S. Ruth, Senior Writer,  10/13/2020
Slideshows
10 Trends Accelerating Edge Computing
Cynthia Harvey, Freelance Journalist, InformationWeek,  10/8/2020
News
Northwestern Mutual CIO: Riding Out the Pandemic
Jessica Davis, Senior Editor, Enterprise Apps,  10/7/2020
White Papers
Register for InformationWeek Newsletters
Video
Current Issue
[Special Report] Edge Computing: An IT Platform for the New Enterprise
Edge computing is poised to make a major splash within the next generation of corporate IT architectures. Here's what you need to know!
Slideshows
Flash Poll