Take A Deeper Look at Deep Learning - InformationWeek

InformationWeek is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT
IoT
Data Management // AI/Machine Learning
News
2/20/2019
08:00 AM
Cynthia Harvey
Cynthia Harvey
Slideshows
Connect Directly
Twitter
RSS
E-Mail
50%
50%

Take A Deeper Look at Deep Learning

This form of machine learning continues to grow rapidly. Here's what you need to know as you consider whether to implement deep learning in your organization.
Previous
2 of 10
Next

1. Deep learning is useful only for complex problems.

Image: Pixabay
Image: Pixabay

As is common with emerging technologies, people have inflated expectations of what deep learning can do. Deep learning is very powerful, but it requires vast amounts of resources. And it is overkill for some basic analytics problems.

In its Deep Learning Guidebook, data science platform vendor Dataiku compares deep learning to traveling by airplane. It's great if you want to go from New York to Paris. But if you want to go from Manhattan to Brooklyn, taking a plane just doesn't make sense.

In the same way that air travel is best for long distances, deep learning is best for complicated problems. It doesn't require deep learning to predict that someone who bought ice cream cones might also want to buy ice cream. Human data scientists are good at understanding those sorts of problems and building models that can help them predict purchase behavior. In fact, regular machine learning is better for most structured data, that is, the kind of data that can reside in a traditional database.

However, if you weren't sure how to build a model for a complex problem that involves unstructured data — like determining which Facebook posts have "fake news," which images show the earliest signs of cancer or which network traffic is malicious — that's where deep learning might become helpful.

Cynthia Harvey is a freelance writer and editor based in the Detroit area. She has been covering the technology industry for more than fifteen years. View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.
Previous
2 of 10
Next
Comment  | 
Print  | 
More Insights
Commentary
2021 Outlook: Tackling Cloud Transformation Choices
Joao-Pierre S. Ruth, Senior Writer,  1/4/2021
News
Enterprise IT Leaders Face Two Paths to AI
Jessica Davis, Senior Editor, Enterprise Apps,  12/23/2020
Slideshows
10 IT Trends to Watch for in 2021
Cynthia Harvey, Freelance Journalist, InformationWeek,  12/22/2020
White Papers
Register for InformationWeek Newsletters
Video
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you.
Slideshows
Flash Poll